Fuzzy System Implementation through its Approximation with Simplified Radial Basis Networks
نویسنده
چکیده
The paper investigates the method of a fuzzy system design through its approximation with neural networks. It concentrates on further simplification by replacement of a Gaussian radial basis function with its linear and piecewise linear approximation. Different approximating possibilities are tested on four controllers chosen as benchmarks.
منابع مشابه
Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملScattered data approximation of fully fuzzy data by quasi-interpolation
Fuzzy quasi-interpolations help to reduce the complexity of solving a linear system of equations compared with fuzzy interpolations. Almost all fuzzy quasi-interpolations are focused on the form of $widetilde{f}^{*}:mathbb{R}rightarrow F(mathbb{R})$ or $widetilde{f}^{*}:F(mathbb{R})rightarrow mathbb{R}$. In this paper, we intend to offer a novel fuzzy radial basis function by the concept of so...
متن کاملARFNNs under Different Types SVR for Identification of Nonlinear Magneto-Rheological Damper Systems with Outliers
This paper demonstrates different types support vector regression (SVR) for annealing robust fuzzy neural networks (ARFNNs) to identification of nonlinear magneto-rheological (MR) damper with outliers. A SVR has the good performances to determine the number of rule in the simplified fuzzy inference system and initial weights for the fuzzy neural networks. In this paper, we independently propose...
متن کاملAPPROXIMATION BY RADIAL BASIS FUNCTION NETWORKS Application to Option Pricing
We propose a method of function approximation by radial basis function networks. We will demonstrate that this approximation method can be improved by a pre-treatment of data based on a linear model. This approximation method will be applied to option pricing. This choice justifies itself through the known nonlinear nature of the behavior of options price and through the effective contribution ...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کامل